The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation

نویسندگان

  • Joohyun Park
  • Haiyan Zhao
  • Sunghoe Chang
چکیده

Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrin-mediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of the BAR domain which plays a critical role in membrane penetration, SNX9 does not. Thus, whether and how SNX9 BAR domain could induce the deformation of the plasma membrane is not clear. The present study identified the internal putative amphiphatic stretch in the 1(st) α-helix of the SNX9 BAR domain and proved that together with the N-terminal helix (H0) region, this internal putative amphiphatic stretch is critical for inducing membrane tubulation. Therefore, our study shows that SNX9 uses a unique mechanism to induce the tubulation of the plasma membrane which mediates proper membrane deformation during clathrin-mediated endocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2.

Dynamic membrane remodeling during intracellular trafficking is controlled by the intricate interplay between lipids and proteins. BAR domains are modules that participate in endocytic processes by binding and deforming the lipid bilayer. Sorting nexin 9 (SNX9), which functions in clathrin-mediated endocytosis, contains a BAR domain, however, the properties of this domain are not well understoo...

متن کامل

SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1-positive endosomal trafficking.

SNX9, SNX18 and SNX30 constitute a separate subfamily of PX-BAR-containing sorting nexin (SNX) proteins. We show here that most tissues express all three paralogs, and immunoprecipitation and immunofluorescence experiments demonstrated that the SNX9-family proteins act as individual entities in cells. Their SH3 domains displayed a high selectivity for dynamin 2, and the PX-BAR units had the cap...

متن کامل

Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms.

The crescent-shaped BAR (Bin/Amphiphysin/Rvs-homology) domain dimer is a versatile protein module that senses and generates positive membrane curvature. The BAR domain dimer of human endophilin-A1, solved at 3.1 A, has a unique structure consisting of a pair of helix-loop appendages sprouting out from the crescent. The appendage's short helices form a hydrophobic ridge, which runs across the co...

متن کامل

The PX-BAR membrane-remodeling unit of sorting nexin 9.

Sorting nexins (SNXs) form a family of proteins known to interact with components in the endosomal system and to regulate various steps of vesicle transport. Sorting nexin 9 (SNX9) is involved in the late stages of clathrin-mediated endocytosis in non-neuronal cells, where together with the GTPase dynamin, it participates in the formation and scission of the vesicle neck. We report here crystal...

متن کامل

Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin.

Peripheral membrane proteins of the Bin/amphiphysin/Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) family participate in cellular membrane trafficking and have been shown to generate membrane tubules. The degree of membrane bending appears to be encoded in the structure and immanent curvature of the particular protein domains, with BAR and F-BAR domains inducing high- and low-curvature tubules, re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2014